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Abstract. Deep learning models, such as convolutional neural net-
works and self-attention mechanisms, have been shown to be effective
in computer-aided diagnosis (CAD) of Alzheimer’s disease (AD) using
structural magnetic resonance imaging (sMRI). Most of them use spa-
tial convolutional filters to learn local information from the images. In
this paper, we propose a 3D Global Fourier Network (GF-Net) to uti-
lize global frequency information that captures long-range dependency
in the spatial domain. The GF-Net contains three primary components:
a 3D discrete Fourier transform, an element-wise multiplication between
frequency domain features and learnable global filters, and a 3D inverse
Fourier transform. The GF-Net is trained by a multi-instance learning
strategy to identify discriminative features. Extensive experiments on
two independent datasets (ADNI and AIBL) demonstrate that our pro-
posed GF-Net outperforms several state-of-the-art methods in terms of
accuracy and other metrics, and can also identify pathological regions of
AD. The code is released at https://github.com/qbmizsj/GFNet.

Keywords: Alzheimer’s disease · Global fourier network ·
Multi-instance learning · MRI

1 Introduction

Alzheimer’s disease (AD) has become one of the most prevalent neurological dis-
orders due to the increasing population of AD [1]. In AD patients, their cogni-
tive function is progressively impaired, accompanied by irreversible neurological
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damage. An early diagnosis of AD could provide valuable information in the
subsequent treatment, thereby delaying the onset of late stage symptoms, such
as amnesia. Such a diagnosis can be achieved by structural magnetic resonance
imaging (sMRI) which can capture the morphological changes induced by brain
atrophy in a non-invasive way [2].

Existing methods for computer-aided diagnosis (CAD) of AD using sMRI
could be categorized into traditional machine learning (ML) and deep learn-
ing (DL) [3]. Traditional ML methods follow the pipeline of regions-of-interest
(ROIs) extraction and feature classification [4–10]. However, manual ROI extrac-
tion or feature construction is laborious and time-consuming. DL methods, espe-
cially convolutional neural networks (CNN), extract image features automati-
cally, hence may greatly improve the performance of AD diagnosis [11–19].

Currently, several DL methods have been proposed for this task. Some meth-
ods replace the machine learning classifiers with neural networks while keeping
the pre-defined ROIs [17,18]. Some other methods train CNN in a multi-instance
learning strategy [14]. Typically, these DL methods use spatial convolution to
extract local features [15]. However, spatial convolution means using local recep-
tive fields in vision, which ignores global connections between disease-related
brain regions.

To address this problem, we propose a global Fourier network (GF-Net). The
GF-Net divides an input image into several sub-regions (patches) and consists of
a patch embedding operation and a sequence of global Fourier blocks (GF block).
Each block contains a 3D discrete Fourier transform, an element-wise multipli-
cation, and a 3D inverse Fourier transform. The element-wise multiplication is
introduced to learn filters in the frequency domain to capture global informa-
tion. The GF-Net is trained by a multi-instance learning (MIL) strategy, which
randomly drops some patches (filling with zero) to generate additional instances
for training. Our model was applied on two AD datasets and showed promising
performance. To illustrate the effectiveness of the extracted features, we present
two interpretability analyses, saliency map and Shapley value, to highlight the
pathological regions.

2 Methods

An overview of our architecture is given in Fig. 1. It consists of a patch embedding
operation and a series of global Fourier blocks (GF block). Let x ∈ R

H×W×D×C

denote the input image, where H, W , D denote the height, width, and depth
respectively, C denotes the number of channels (1 for sMRI). We first extract
several 3D patches {xi ∈ R

P×P×P×C : i = 1, . . . , N} from x, where P is the
patch size, N = HWD/P 3 is the number of patches. The patches are embedded
in a E-dimensional space by linear transformation zi = Wvec(xi), which is
implemented by E 3D convolutions with a stride equal to P . Denote the resulting
tensor by z ∈ R

H̃×W̃×D̃×E (H̃ = H
P , W̃ = W

P , D̃ = D
P ). This tensor will go

through a sequence of GF blocks for prediction.
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Fig. 1. The overall architecture of the GF-Net. It is a frequency attention model that
consists of a sequence of blocks. Each block features a 3D discrete Fourier transform
to convert features from the spatial domain to the frequency domain, an element-wise
multiplication between frequency features and learnable global filters, and a 3D inverse
Fourier transform to convert the features back to the spatial domain.

2.1 Global Fourier Block

A GF block adds z to its frequency filtered version before feeding it to a multi-
layer perceptron (MLP) fMLP :

fGF (z) = fMLP (z + fFF (z)),

where fFF : R
H̃×W̃×D̃×E → R

H̃×W̃×D̃×E denotes a channel-wise frequency
filtering operation by Fourier transform. We first explain fFF in details below.

Frequency Filtering by 3D Fourier Transform. Simply put, fFF is com-
posed of a layer normalization (LN), a positional embedding (PE), Fourier and
inverse Fourier transform, and finally another LN (see Fig. 1). Given input z,
the LN operation normalizes it along the channels such that the values at each
voxel has a zero mean and a standard deviation of 1. The PE operation adds a
learnable vector to each voxel. After these two operations, denote the resulting
tensor by z̃ and its jth channel by z̃j . The 3D image z̃j has a size H̃ × W̃ × D̃
and can be seen as a discretized version of a 3D function z̃j : R3 → R. We use
the 3D Fourier transform to capture the global information of this function:

ẑj(ξ) = F(z̃j)(ξ) =
∫
R3

z̃j(y)e−i2πy·ξdy,

where ξ ∈ R
3. For a discretized image z̃j , a fast Fourier transform (FFT) imple-

mentation can be used to convert it to a tensor in complex values. Combining
all these tensors, we have ẑ ∈ C

H̃×W̃×D̃×E , which can be seen as features in the
frequency domain. These features are multiplied element-wisely by a learnable
filter K ∈ C

H̃×W̃×D̃×E :
ẑ′ = K � ẑ
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where � is the element-wise multiplication (Hadamard product). Then, a 3D
inverse Fourier transform is performed channel-wisely to convert the frequency
domain features to the spatial domain. Denote the output by z̃′ ∈ R

H̃×W̃×D̃×E .
Finally, another LN is applied to z̃′ and the result is the output of fFF .

Theoretically, multiplication in the frequency domain is equivalent to con-
volution in the spatial domain. We have some empirical results showing that
as the filter size increases in spatial convolution, the performance improves in
our framework, possibly due to better learned global information (see Fig. S1 in
the supplementary material). However, the computational complexity of spatial
convolution in the 3D domain increases rapidly as the filter size increases. Hence,
filtering in the frequency domain becomes a more viable approach. Similar results
have also been found in a Transformer-like framework [20].

Multi-layer Perceptron Layer. The MLP layer in the GF block reshapes
z + fFF (z) to a matrix of size H̃W̃ D̃ × E and linearly transforms its columns,
followed by an activation function. The linear transformation is designed to keep
the resulting size unchanged (i.e. H̃W̃ D̃ ×E) such that the resulting matrix can
be reshaped back to the original size H̃ × W̃ × D̃ × E. Hence, the whole GF
block preserves the tensor size.

The above GF block is repeated multiple times. The output of the last GF
block is fed to a classifier layer for prediction.

2.2 Classifier Layer and Loss Function

The classifier layer contains a global average pooling (GAP) layer and a linear
layer. The GAP layer calculates the average value along the channel dimension.
Then the resulting 3D image is flattened and the linear layer is applied to the
flattened vector to produce the logits. Finally, a standard cross entropy loss is
used for training.

2.3 Multi-instance Learning Strategy

To avoid the over-fitting problem, we drop some patches randomly to generate
multiple instances for training. Dropping patches is implemented by filling the
patches with zero [21]. Hence, for each image, we obtain multiple instances that
have the same size and share the same class label as the original image [22]. For
example, given an image, we can randomly pick 30, 40, 50 patches for dropping,
which results in 4 different instances that share the same label.

3 Experiments and Results

3.1 Dataset Description and Experimental Setup

The brain structural images (T1WI) acquired at 3.0T MRI systems, were pro-
vided by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and the Aus-
tralian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL). We
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pre-processed the sMRI images by spatial normalization, intensity normalization,
and background removal. The spatial normalization registered the images to the
MNI152 template by affine transformation as implemented by the FSL package
in Python. The intensity normalization transforms the intensities linearly such
that they have a zero mean and a standard deviation of 1. Any voxel with inten-
sity lower than −1 was set to −1 and those with intensity higher than 2.5 were
truncated to 2.5. The background removal step stripped the skull according to
the MNI152 template and set the voxels outside the skull to −1. Quality check of
these steps was performed by visual inspection. After quality check, 417 images
were left from ADNI (229 for NC, 188 for AD), and 380 images from AIBL (320
for NC, 62 for AD). All of them were acquired within 6 months from the date
of diagnosis.

In the experiment, 60% of the ADNI data were used for network train-
ing, 20% for validation and the remaining 20% for testing. The entire AIBL
data were kept for testing. The experiment was repeated 10 times with ran-
dom training/validation/test split and the mean and standard deviation of the
accuracy/sensitivity/specificity/F1-score were calculated.

3.2 Implementation Details

Our model was implemented in PyTorch and accelerated by 2 NVIDIA A-6000
GPUs and 4 NVIDIA V-100 GPUs. The Gaussian error linear unit (GELU) was
used as the activation function in the MLP of the GF blocks. The patch size
was set to 10 × 10 × 10. The batch size was set to 10. The learning rate was set
to 0.0001 and the maximal number of training epochs was set to 1000 with a
weight decay of 0.9 for each 100 epochs. The number of GF blocks was set to 8.
For each image, we dropped 1/16, 1/8, 1/4, 1/2 patches according to the patch
indices randomly 10 times, resulting in a training set whose size is 40 times the
original size.

3.3 Experimental Results on ADNI and AIBL

To show the effectiveness of the proposed GF-Net, we compared it with
VBM [23], CNN3D [24], ResNet3D [25], FCN [14], and ViT3D [26]. VBM cal-
culates gray matter (GM) densities and uses a linear SVM classifier. The other
competing methods were run according to their online code. The results are
shown in Table 1.
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Table 1. Results for AD classification (AD vs. NC) on ADNI and AIBL. The results
(in %) were calculated based on 10 random training/validation/test splits. The rows in
italic have their numbers directly copied from the papers. The “# of Images” column
has a format of (number of images for AD, number of images for NC). The best result
in each category is boldfaced.

Dataset Method # of Images Accuracy Sensitivity Specificity F1-score AUC

ADNI VBM (188,229) 82.5± 4.4 75.5± 4.7 88.9± 3.2 82.8± 5.7 80.1± 4.2

CNN3D 84.8± 3.8 86.2± 3.3 84.5± 4.8 85.3± 4.2 84.6± 4.4

FCN 78.6± 5.7 82.2± 4.3 76.5± 6.4 79.2± 6.8 78.2± 5.3

ViT3D 85.5± 2.9 87.9± 3.6 86.8± 3.7 87.3± 3.6 85.7± 3.5

ResNet3D 87.7± 3.5 90.2± 2.8 89.7± 3.0 90.0± 3.5 86.2± 4.0

Salvatore et al. [5] (137,162) 76.0 − − − −
Cuingnet et al. [6] (137,162) 88.6 81.0 95.0 87.4 −
Eskildsen et al. [7] (194,226) 86.7 80.4 92.0 85.8 −
Cao et al. [8] (192,229) 88.6 85.7 90.4 88.0 −
Lin et al. [19] (188,229) 88.8 − − − −
Tong et al. [10] (198,231) 90.0 86.0 93.0 89.4 −
Li et al. [18] (199,229) 89.5 87.9 90.8 89.3 −
Qiu et al. [16] (188,229) 83.4 76.7 88.9 82.4 −
H-FCN [14] (389,400) 90.5 89.7 91.3 90.5 −
DA-Net [15] (389,400) 92.4 91.0 93.8 92.4 −
GF-Net (188,229) 94.1±2.8 93.2±2.4 90.6± 2.6 91.8± 2.6 93.5±2.7

AIBL VBM (62,320) 81.7± 4.4 75.5± 4.7 86.3± 4.1 80.4± 6.1 81.5± 4.2

CNN3D 86.2± 2.9 70.2± 5.7 88.7± 3.2 78.3± 4.8 80.3± 5.5

FCN 77.2± 5.5 74.4± 4.6 78.8± 5.1 76.5± 4.8 76.8± 5.1

ViT3D 87.5± 2.6 88.2± 3.4 91.8± 1.9 89.9± 4.0 87.9± 4.1

ResNet3D 88.0± 3.6 91.1± 2.4 83.7± 4.6 87.2± 3.5 87.8± 3.7

GF-Net 93.2±2.4 93.3±2.6 94.6±3.3 94.0±2.7 93.8±2.9

Several observations could be derived from Table 1: 1) The three DL
methods—CNN3D, ViT3D, ResNet3D—yield better performance than the tra-
ditional VBM method, suggesting the superiority of DL algorithms on this task.
2) The proposed GF-Net outperforms the competing methods by a relatively
large margin in all the metrics. We also calculated the p-values and the p-values
were less than 0.05. 3) Our results are even better than almost all the results in
the literature even though that our results are calculated based on 10 random
splits.

Additional results on classifying progressive mild cognitive impairment
(pMCI) and stable mild cognitive impairment (sMCI) are available in Table S1
in the supplementary material (AUC: 87.8± 3.6). Similar to classifying AD and
NC, GF-Net achieved superior accuracy on classifying pMCI and sMCI.

3.4 Ablation Study

We performed two ablation studies. First, we investigated the influence of the
number of GF blocks. Using the ADNI dataset, we selected the number of blocks
from {4,6,8,10} and reported the results in Table 2. As shown in Table 2, most of
the metrics increased when the number of blocks increased from 4 to 8. However,
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when the number of blocks reached 10, the performance declined slightly, which
could be attributed to the complexity of the network that results in over-fitting.
Nevertheless, the proposed network in this case still outperformed other state-
of-the-art methods with a large margin, demonstrating its robustness.

Table 2. Ablation study (results in %) on the number of blocks on ADNI.

# of blocks Accuracy Sensitivity Specificity F1-score AUC

4 93.3± 3.1 92.1± 2.7 91.6± 2.4 91.8± 2.7 91.5± 3.6

6 93.5± 3.5 91.7± 2.3 91.3± 2.2 91.5± 3.1 93.1± 3.0

8 94.1± 2.8 93.2± 2.4 90.6± 2.6 91.8± 2.6 93.5± 2.7

10 93.4± 2.7 91.4± 2.6 91.4± 2.7 91.4± 3.2 92.5± 3.5

In the previous experiment, the patch size is fixed as 10×10×10. Now, we
show the effect of different patch sizes. Table 3 shows the classification results
when the patch size ranges in 10×10×10, 15×15×15, 20×20×20, 25×25×25.
From Table 3, we can see that our GF-Net is also not sensitive to the change of
patch size. The patch size of 10× 10× 10 shows the best performance, while the
rest sizes also outperform the current state-of-the-art methods.

Table 3. Ablation study (results in %) on the patch size on ADNI.

Patch size Accuracy Sensitivity Specificity F1-score AUC

10 × 10 × 10 94.1± 2.8 93.2± 2.4 90.6± 2.6 91.8± 2.6 93.5± 2.7

15 × 15 × 15 93.7± 3.1 91.2± 3.7 90.3± 3.4 90.8± 3.6 92.3± 2.9

20 × 20 × 20 93.5± 3.4 90.7± 3.9 91.1± 2.9 90.9± 3.1 92.0± 3.1

25 × 25 × 25 92.4± 2.5 89.9± 3.5 90.2± 3.1 90.0± 2.7 91.4± 3.6

3.5 Interpretation by Saliency Map and Shapley Value

To investigate the discriminative regions for classifying AD and NC, we employed
two interpretation analyses, saliency map and Shapley value. Figure 2 shows the
corresponding saliency map, which calculates the derivative of the logit with
respect to the input image. Figure 2 shows that most of the discriminative voxels
(in red) are located in the brain regions closely associated with clinical diagnosis,
such as hippocampus, amygdala, and thalamus [27,28].

We also use Shapley value explanation to quantitatively evaluate the impor-
tance of the extracted features, i.e. the tensor before the last linear layer. Specif-
ically, the features from all the instances are reduced to 3 dimensions by PCA,
called PC1, PC1, PC3. They are combined with non-imaging features: mini-
mental state examination (MMSE), age, APOE, and gender. The combined fea-
tures are fed into XGboosting for classification. Finally, the Shapley values are
calculated for all the features and shown in Fig. 3.
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It is not surprising that MMSE has the widest spread since MMSE measures
the mental state of the patients (the lower, the more severe), which can be consid-
ered as another ground truth to classify AD and NC. Furthermore, our imaging

Fig. 2. Saliency map of the trained network on an example image. The three rows
show the saliency map, clinically related reference regions, saliency map truncated to
the reference regions respectively.

Fig. 3. Shapley values for analyzing importance scores of the image features extracted
by GF-Net, when the image features are combined with the non-imaging features for
classification. The spread of the Shapley values of a feature reflects its impact on the
model output.
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features have a spread close to MMSE, outperforming the other non-imaging
features by a large margin. This quantitative interpretation demonstrates the
effectiveness of our method again.

4 Conclusion

We propose a 3D GF-Net for AD diagnosis using sMRI. The GF-Net uses fre-
quency filtering to capture disease-related global information. The network is
trained by an MIL strategy to avoid the over-fitting problem. The classifica-
tion results on ADNI and AIBL demonstrate that our method can significantly
outperform other state-of-the-art methods for classifying AD and NC (also for
classifying pMCI and sMCI). Two interpretability analyses, saliency map and
Shapley value, show that our method could identify clinically meaningful regions.
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